首页 > 品牌 > 知识 > sio color 是什么牌子,如何区分钛白粉好坏

sio color 是什么牌子,如何区分钛白粉好坏

来源:整理 时间:2024-04-27 23:59:20 编辑:隐形眼镜 手机版

1,如何区分钛白粉好坏

钛白粉不仅可以提供遮盖力,也是一种紫外线屏蔽剂。涂料用钛白粉分锐钛型和金红石型两种。锐钛型钛白粉和金红石型钛白粉的结构不同,用于不同的场合。锐钛型钛白粉因易于粉化而用于内墙涂料,金红石型因其耐老化而常用于外墙涂料。  其化学特征及物理常数见下表  物性 锐钛型 金红石型  晶系 正方 正方  晶形 锥形 针形  相对密度 .8~3.9 4.2~4.3  折射率 2.52 2.71  莫式硬度 5.5~6 6~7  介质常数 48 114*  同样的金红石型钛白粉,又有两种制造方法,不同的制造方法,品质就有之别。  硫酸法制造:粒径大,颜色发红光。色相没有很白的,偏灰或偏黄,一批与一批的色相也不同。所以在高档的大楼中不能使用。  氯化法制造:粒径细,颜色发兰光。色相纯白,很稳定。  一般钛白粉的供应商所提供的产品介绍资料大致包括以下内容:  TiO2 % 表示白度,遮盖力(不透明性,着色强度),百分比含量越高,白度、遮盖力就越大。  Al2O3 % 表示分散,光泽,耐候性(经致密铝处理),百分比含量越高,分散、光泽就越大。  SiO2 % 表示耐候性(经致密硅处理),百分比含量越高,耐候性就越大。  有机物 具有有机物包覆,分散性(湿润)更好。  Color L 表示白度,辉度(明亮度)。  平均粒径 决定光散射,遮蔽性。粒径越小,钛白粉色调越偏兰相。  吸油量 影响系统的光泽、分散性。  电阻值 表示可溶性盐含量。  由于金红石型钛白粉的价格比较高,用量又大,市场上的假冒产品比较多,主要包括以下几方面:  (1)将国产的钛白粉包装成进口钛白粉  (2)以锐钛型钛白粉冒充金红石型的或在金红石型中掺入部分锐钛型钛白粉;  (3)在金红石型钛白粉或锐钛型钛白粉中混入碳酸钙、立德粉、硫酸钡等填充料。  假冒产品的防范和鉴别:  (1)进口钛白粉在其包装上通常有其特征(如图案、字体、批号等),首先可在其包装上加以识别;  (2)对于以锐钛型冒充金红石型的钛白粉,用一般的化学方法难以区别,只能用X - 衍射法进行鉴别。  (3)对于在钛白粉中混入CaCO3 的,可通过在钛白粉中加入稀硫酸或稀盐酸来加以鉴别,会产生气泡,且会使澄清石灰水变浑浊的,则表明该钛白粉中混有CaCO3;  (4)对于在钛白粉中混有立德粉的,加入稀硫酸或稀盐酸后会产生臭鸡蛋的气味;  (5)对于混入BaSO4 的,因其不能与酸反应,一般也只能用X -衍射来鉴别。
钛白粉分为金红石型和锐钛型,成品是要做表面有机活性处理的,不然很难和有机物相容,白度和它的粒经有关,最后的综合性能还跟生产工艺有关,目前一般有两种生产方法,一种硫酸法,一种氯化法.我认为楼主还是看厂家来定质量吧.如果要自己区分的话 钛白粉的白度指标很重要的。如果做填充用很多白色填料可以选择的,没啥意思。做浅色的制品就要求白度了。
说实话,钛白粉就两种型号;金红石型钛白粉和锐钛型钛白粉,金红石型钛白粉比锐钛型钛白粉要好,至于等级,当然美国的会多少比国内生产的好点,但这也不一定,大厂应该更好品质,这个是比较专业的,我们日常用只能从这两个型号判断

如何区分钛白粉好坏

2,光纤的种类

我只是知道有单模和多模的,单模就是波长在1310NM上,多模就是850NM的,还有就是接口也不同,分LC ,SC ,FC,因本人专业知识有限,其他的是我在网上查找的!请参考! 一, 光纤的分类 光纤是光导纤维(OF:Optical Fiber)的简称。但光通信系统中常常将 Opti cal Fibe(光纤)又简化为 Fiber,例如:光纤放大器(Fiber Amplifier)或光 纤干线(Fiber Backbone)等等。有人忽略了Fiber虽有纤维的含义,但在光系统 中却是指光纤而言的。因此,有些光产品的说明中,把fiber直译成“纤维”,显然 是不可取的。 光纤实际是指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材 料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯 中传播前进的媒体。 光纤的种类很多,根据用途不同,所需要的功能和性能也有所差异。但对于有 线电视和通信用的光纤,其设计和制造的原则基本相同,诸如:①损耗小;②有一 定带宽且色散小;③接线容易;④易于成统;⑤可靠性高;⑥制造比较简单;⑦价 廉等。 光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上 作一归纳的,兹将各种分类举例如下。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、 1.55pm)。 (2)折射率分布:阶跃(SI)型、近阶跃型、渐变(GI)型、其它(如三角型、W型、 凹陷型等)。 (3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。 (4)原材料:石英玻璃、多成分玻璃、塑料、复合材料(如塑料包层、液体纤芯等)、 红外材料等。按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料 等。 (5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有 管律法(Rod intube)和双坩锅法等。 二, 石英光纤 是以二氧化硅(SiO2)为主要原料,并按不同的掺杂量,来控制纤芯和包层的 折射率分布的光纤。石英(玻璃)系列光纤,具有低耗、宽带的特点,现在已广泛 应用于有线电视和通信系统。 掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。通常,作为 1.3Pm波域的通信用光纤中,控制纤芯的掺杂物为二氧化绪(GeO2),包层是用SiO 炸作成的。但接氟光纤的纤芯,大多使用SiO2,而在包层中却是掺入氟素的。由于, 瑞利散射损耗是因折射率的变动而引起的光散射现象。所以,希望形成折射率变动 因素的掺杂物,以少为佳。 氟素的作用主要是可以降低SIO2的折射率。因而,常用于包层的掺杂。由于掺 氟光纤中,纤芯并不含有影响折射率的氟素掺杂物。由于它的瑞利散射很小,而且 损耗也接近理论的最低值。所以多用于长距离的光信号传输。 石英光纤(Silica Fiber)与其它原料的光纤相比,还具有从紫外线光到近红 外线光的透光广谱,除通信用途之外,还可用于导光和传导图像等领域。 三, 红外光纤 作为光通信领域所开发的石英系列光纤的工作波长,尽管用在较短的传输距离, 也只能用于2pm。为此,能在更长的红外波长领域工作,所开发的光纤称为红外光纤。 红外光纤(Infrared Optical Fiber)主要用于光能传送。例如有:温度计量、 热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。 四, 复台光纤 复合光纤(Compound Fiber)在SiO2原料中,再适当混合诸如氧化钠(Na2O)、 氧化硼(B2O2)、氧化钾(K2O2)等氧化物的多成分玻璃作成的光纤,特点是多成 分玻璃比石英的软化点低且纤芯与包层的折射率差很大。主要用在医疗业务的光纤 内窥镜。 五, 氟化物光纤 氯化物光纤(Fluoride Fiber)是由氟化物玻璃作成的光纤。这种光纤原料又 简称 ZBLAN(即将氟化铝(ZrF4)、氰化钡(BaF2)、氟化镧(LaF3)、氟化铝 (A1F2)、氰化钠(NaF)等氯化物玻璃原料简化成的缩语。主要工作在2~ 10pm 波长的光传输业务。 由于ZBLAN具有超低损耗光纤的可能性,正在进行着用于长距离通信光纤的可 行性开发,例如:其理论上的最低损耗,在3pm波长时可达10-2~10-3dB/km,而 石英光纤在1.55pm时却在0.15~0.16dB/Km之间。 目前,ZBLAN光纤由于难于降低散射损耗,只能用在2.4~2.7pm的温敏器和热 图像传输,尚未广泛实用。 最近,为了利用ZBLAN进行长距离传输,正在研制1.3pm的掺错光纤放大器(PD FA)。 六, 塑包光纤 塑包光纤(Plastic Clad Fiber)是将高纯度的石英玻璃作成纤芯,而将折射 率比石英稍低的如硅胶等塑料作为包层的阶跃型光纤。它与石英光纤相比较,具有 纤芯租、数值孔径(NA)高的特点。因此,易与发光二极管LED光源结合,损耗也 较小。所以,非常适用于局域网(LAN)和近距离通信。 七, 塑料光纤 这是将纤芯和包层都用塑料(聚合物)作成的光纤。早期产品主要用于装饰和 导光照明及近距离光键路的光通信中。 原料主要是有机玻璃(PMMA)、聚苯乙稀(PS)和聚碳酸酯(PC)。损耗受到 塑料固有的C-H结合结构制约,一般每km可达几十dB。为了降低损耗正在开发应用 氟索系列塑料。由于塑料光纤(Plastic Optical fiber)的纤芯直径为1000pm, 比单模石英光纤大100倍,接续简单,而且易于弯曲施工容易。近年来,加上宽带化 的进度,作为渐变型(GI)折射率的多模塑料光纤的发展受到了社会的重视。最近, 在汽车内部LAN中应用较快,未来在家庭LAN中也可能得到应用。 八, 单模光纤 这是指在工作波长中,只能传输一个传播模式的光纤,通常简称为单模光纤 (SMF:Single ModeFiber)。目前,在有线电视和光通信中,是应用最广泛的光纤。 由于,光纤的纤芯很细(约10pm)而且折射率呈阶跃状分布,当归一化频率V参 数<2.4时,理论上,只能形成单模传输。另外,SMF没有多模色散,不仅传输频带 较多模光纤更宽,再加上SMF的材料色散和结构色散的相加抵消,其合成特性恰好形 成零色散的特性,使传输频带更加拓宽。 SMF中,因掺杂物不同与制造方式的差别有许多类型。凹陷型包层光纤(DePr- essed Clad Fiber),其包层形成两重结构,邻近纤芯的包层,较外倒包层的折射 率还低。另外,有匹配型包层光纤,其包层折射率呈均匀分布。 九, 多模光纤 将光纤按工作彼长以其传播可能的模式为多个模式的光纤称作多模光纤(MMF: MUlti ModeFiber)。纤芯直径为50pm,由于传输模式可达几百个,与SMF相比传输 带宽主要受模式色散支配。在历史上曾用于有线电视和通信系统的短距离传输。自 从出现SMF光纤后,似乎形成历史产品。但实际上,由于MMF较SMF的芯径大且与LED 等光源结合容易,在众多LAN中更有优势。所以,在短距离通信领域中MMF仍在重新 受到重视。 MMF按折射率分布进行分类时,有:渐变(GI)型和阶跃(SI)型两种。GI型 的折射率以纤芯中心为最高,沿向包层徐徐降低。从几何光学角度来看,在纤芯中 前进的光束呈现以蛇行状传播。由于,光的各个路径所需时间大致相同。所以,传 输容量较SI型大。 SI型MMF光纤的折射率分布,纤芯折射率的分布是相同的,但与包层的界面呈 阶梯状。由于SI型光波在光纤中的反射前进过程中,产生各个光路径的时差,致使 射出光波失真,色激较大。其结果是传输带宽变窄,目前SI型MMF应用较少。 十, 色散使移光纤 单模光纤的工作波长在1.3Pm时,模场直径约9Pm,其传输损耗约0.3dB/km。 此时,零色散波长恰好在1.3pm处。 石英光纤中,从原材料上看1.55pm段的传输损耗最小(约0.2dB/km)。由于 现在已经实用的掺铒光纤放大器(EDFA)是工作在1.55pm波段的,如果在此波段也 能实现零色散,就更有利于应用1.55Pm波段的长距离传输。 于是,巧妙地利用光纤材料中的石英材料色散与纤芯结构色散的合成抵消特性, 就可使原在1.3Pm段的零色散,移位到1.55pm段也构成零色散。因此,被命名为色 散位移光纤(DSF:DispersionShifted Fiber)。 加大结构色散的方法,主要是在纤芯的折射率分布性能进行改善。 在光通信的长距离传输中,光纤色散为零是重要的,但不是唯一的。其它性能 还有损耗小、接续容易、成缆化或工作中的特性变化小(包括弯曲、拉伸和环境变 化影响)。DSF就是在设计中,综合考虑这些因素。 十一 色散平坦光纤 色散移位光纤(DSF)是将单模光纤设计零色散位于1.55pm波段的光纤。而色 散平坦光纤(DFF:Dispersion Flattened Fiber)却是将从1.3Pm到1.55pm的较 宽波段的色散,都能作到很低,几乎达到零色散的光纤称作DFF。由于DFF要作到 1.3pm~1.55pm范围的色散都减少。就需要对光纤的折射率分布进行复杂的设计。 不过这种光纤对于波分复用(WDM)的线路却是很适宜的。由于DFF光纤的工艺比较 复杂,费用较贵。今后随着产量的增加,价格也会降低。 十二 色散补偿光纤 对于采用单模光纤的干线系统,由于多数是利用1.3pm波段色散为零的光纤构 成的。可是,现在损耗最小的1.55pm,由于EDFA的实用化,如果能在1.3pm零色散 的光纤上也能令1.55pm波长工作,将是非常有益的。 因为,在1.3Pm零色散的光纤中,1.55Pm波段的色散约有16ps/km/nm之多。 如果在此光纤线路中,插入一段与此色散符号相反的光纤,就可使整个光线路的 色散为零。为此目的所用的是光纤则称作色散补偿光纤(DCF:DisPersion Compe- nsation Fiber)。 DCF与标准的1.3pm零色散光纤相比,纤芯直径更细,而且折射率差也较大。 DCF也是WDM光线路的重要组成部分。 十三 偏派保持光纤 在光纤中传播的光波,因为具有电磁波的性质,所以,除了基本的光波单一 模式之外,实质上还存在着电磁场(TE、TM)分布的两个正交模式。通常,由于 光纤截面的结构是圆对称的,这两个偏振模式的传播常数相等,两束偏振光互不 干涉。但实际上,光纤不是完全地圆对称,例如有着弯曲部分,就会出现两个偏 振模式之间的结合因素,在光轴上呈不规则分布。偏振光的这种变化造成的色散, 称之偏振模式色散(PMD)。对于现在以分配图像为主的有线电视,影响尚不太大。 但对于一些未来超宽带有特殊要求的业务,如:①相干通信中采用外差检波,要 求光波偏振更稳定时;②光机器等对输入输出特性要求与偏振相关时;③在制作 偏振保持光耦合器和偏振器或去偏振器等时;④制作利用光干涉的光纤敏感器等, 凡要求偏振波保持恒定的情况下,对光纤经过改进使偏振状态不变的光纤称作偏 振保持光纤(PMF:Polarization Maintaining fiber),也有称此为固定偏振 光纤的。 十四 双折射光纤 双折射光纤是指在单模光纤中,可以传输相互正交的两个固有偏振模式的光 纤而言。因为,折射率随偏报方向变异的现象称为双折射。在造成双折射的方法 中。它又称作PANDA光纤,即偏振保持与吸收减少光纤(Polarization-maintai- ning AND Absorption- reducing fiber)。它是在纤芯的横向两则,设置热 膨胀系数大、截面是圆形的玻璃部分。在高温的光纤拉丝过程中,这些部分收缩, 其结果在纤芯y方向产生拉伸,同时又在x方向呈现压缩应力。致使纤材出现光弹 性效应,使折射率在X方向和y方向出现差异。依此原理达到偏振保持恒定。 十五 抗恶环境光纤 通信用光纤通常的工作环境温度可在-40~+60℃之间,设计时也是以不受大 量辐射线照射为前提的。相比之下,对于更低温或更高温以及能遭受高压或外力 影响、曝晒辐射线的恶劣环境下,也能工作的光纤则称作抗恶环境光纤(Hard Condition Resistant Fiber)。 一般为了对光纤表面进行机械保护,多涂覆一层塑料。可是随着温度升高, 塑料保护功能有所下降,致使使用温度也有所限制。如果改用抗热性塑料,如聚 四氟乙稀(Teflon)等树脂,即可工作在300℃环境。也有在石英玻璃表面涂覆 镍(Ni)和铝(A1)等金属的。这种光纤则称为耐热光纤(Heat Resistant Fib- er)。 另外,当光纤受到辐射线的照射时,光损耗会增加。这是因为石英玻璃遇到 辐射线照射时,玻璃中会出现结构缺陷(也称作色心:Colour Center),尤在 0.4~0.7pm波长时损耗增大。防止办法是改用掺杂OH或F素的石英玻璃,就能抑 制因辐射线造成的损耗缺陷。这种光纤则称作抗辐射光纤(Radiation Resista- nt Fiber),多用于核发电站的监测用光纤维镜等。 十六 密封涂层光纤 为了保持光纤的机械强度和损耗的长时间稳定,而在玻璃表面涂装碳化硅 (SiC)、碳化钛(TiC)、碳(C)等无机材料,用来防止从外部来的水和氢的 扩散所制造的光纤(HCF:HermeticallyCoated Fiber)。目前,通用的是在化 学气相沉积(CVD)法生产过程中,用碳层高速堆积来实现充分密封效应。这种 碳涂覆光纤(CCF)能有效地截断光纤与外界氢分子的侵入。据报道它在室温的 氢气环境中可维持20年不增加损耗。当然,它在防止水分侵入延缓机械强度的疲 劳进程,其疲劳系数(Fatigue Parameter)可达200以上。所以,HCF被应用于 严酷环境中要求可靠性高的系统,例如海底光缆就是一例。 十七 碳涂层光纤 在石英光纤的表面涂敷碳膜的光纤,称之碳涂层光纤(CCF:Carbon Coated Fiber)。其机理是利用碳素的致密膜层,使光纤表面与外界隔离,以改善光纤 的机械疲劳损耗和氢分子的损耗增加。CCF是密封涂层光纤(HCF)的一种。 十八 金属涂层光纤 金属涂层光纤(Metal Coated Fiber)是在光纤的表面涂布Ni、Cu、A1等 金属层的光纤。也有再在金属层外被覆塑料的,目的在于提高抗热性和可供通 电及焊接。它是抗恶环境性光纤之一,也可作为电子电路的部件用。 早期产品是在拉丝过程中,涂布熔解的金属作成的。由于此法因被玻璃与 金属的膨胀系数差异太大,会增微小弯曲损耗,实用化率不高。近期,由于在 玻璃光纤的表面采用低损耗的非电解镀膜法的成功,使性能大有改善。 十九 掺稀土光纤 在光纤的纤芯中,掺杂如何(Er)、钦(Nd)、谱(Pr)等稀土族元素的 光纤。1985年英国的索斯安普顿(Sourthampton)大学的佩思(Payne)等首 先发现掺杂稀土元素的光纤(Rare Earth DoPed Fiber)有激光振荡和光放大 的现象。于是,从此揭开了惨饵等光放大的面纱,现在已经实用的1.55pmEDFA 就是利用掺饵的单模光纤,利用1.47pm的激光进行激励,得到1.55pm光信号放 大的。另外,掺错的氟化物光纤放大器(PDFA)正在开发中。 二十 喇曼光纤 喇曼效应是指往某物质中射人频率f的单色光时,在散射光中会出现频率f 之外的f±fR, f±2fR等频率的散射光,对此现象称喇曼效应。由于它是物质 的分子运动与格子运动之间的能量交换所产生的。当物质吸收能量时,光的振 动数变小,对此散射光称斯托克斯(stokes)线。反之,从物质得到能量,而 振动数变大的散射光,则称反斯托克斯线。于是振动数的偏差FR,反映了能级, 可显示物质中固有的数值。 利用这种非线性媒体做成的光纤,称作喇曼光纤(RF:Raman Fiber)。 为了将光封闭在细小的纤芯中,进行长距离传播,就会出现光与物质的相互作 用效应,能使信号波形不畸变,实现长距离传输。 当输入光增强时,就会获得相干的感应散射光。应用感应喇曼散射光的设 备有喇曼光纤激光器,可供作分光测量电源和光纤色散测试用电源。另外,感 应喇曼散射,在光纤的长距离通信中,正在研讨作为光放大器的应用。 二十一 偏心光纤 标准光纤的纤芯是设置在包层中心的,纤芯与包层的截面形状为同心圆型。 但因用途不同,也有将纤芯位置和纤芯形状、包层形状,作成不同状态或将包 层穿孔形成异型结构的。相对于标准光纤,称这些光纤叫异型光纤。 偏心光纤(Excentric Core Fiber),它是异型光纤的一种。其纤芯设置 在偏离中心且接近包层外线的偏心位置。由于纤芯靠近外表,部分光场会溢出 包层传播(称此为渐消彼,Evanescent Wave)。 因此,当光纤表面附着物质时,因物质的光学性质在光纤中传播的光波受 到影响。如果附着物质的折射率较光纤高时,光波则往光纤外辐射。若附着物 质的折射率低于光纤折射率时,光波不能往外辐射,却会受到物质吸收光波的 损耗。利用这一现象,就可检测有无附着物质以及折射率的变化。 偏心光纤(ECF)主要用作检测物质的光纤敏感器。与光时域反射计(OTDR) 的测试法组合一起,还可作分布敏感器用。 二十二 发光光纤 采用含有荧光物质制造的光纤。它是在受到辐射线、紫外线等光波照射时, 产生的荧光一部分,可经光纤闭合进行传输的光纤。 发光光纤(Luminescent Fiber)可以用于检测辐射线和紫外线,以及进 行波长变换,或用作温度敏感器、化学敏感器。在辐射线的检测中也称作闪光 光纤(Scintillation Fiber)。 发光光纤从荧光材料和掺杂的角度上,正在开发着塑料光纤。 二十三 多芯光纤 通常的光纤是由一个纤芯区和围绕它的包层区构成的。但多芯光纤(Multi Core Fiber)却是一个共同的包层区中存在多个纤芯的。由于纤芯的相互接近 程度,可有两种功能。 其一是纤芯间隔大,即不产生光耦会的结构。这种光纤,由于能提高传输 线路的单位面积的集成密度。在光通信中,可以作成具有多个纤芯的带状光缆, 而在非通信领域,作为光纤传像束,有将纤芯作成成千上万个的。 其二是使纤芯之间的距离靠近,能产生光波耦合作用。利用此原理正在开 发双纤芯的敏感器或光回路器件。 二十四 空心光纤 将光纤作成空心,形成圆筒状空间,用于光传输的光纤,称作空心光纤 (Hollow Fiber)。 空心光纤主要用于能量传送,可供X射线、紫外线和远红外线光能传输。空 心光纤结构有两种:一是将玻璃作成圆筒状,其纤芯与包层原理与阶跃型相同。 利用光在空气与玻璃之间的全反射传播。由于,光的大部分可在无损耗的空气 中传播,具有一定距离的传播功能。二是使圆筒内面的反射率接近1,以减少反 射损耗。为了提高反射率,有在简内设置电介质,使工作波长段损耗减少的。 例如可以作到波长10.6pm损耗达几dB/m的。 参考资料:http://www.afzhan.cn/article/show/497.html

光纤的种类

3,液晶如何制造

就是用......液晶制造的液晶显示器(lcd) 目前科技信息产品都朝着轻、薄、短、小的目标发展,在计算机周边中拥有悠久历史的显示器产品当然也不例外。在便于携带与搬运为前题之下,传统的显示方式如crt映像管显示器及led显示板等等,皆受制于体积过大或耗电量甚巨等因素,无法达成使用者的实际需求。而液晶显示技术的发展正好切合目前信息产品的潮流,无论是直角显示、低耗电量、体积小、还是零辐射等优点,都能让使用者享受最佳的视觉环境。 2. 液晶的诞生 要追溯液晶显示器的来源,必须先从「液晶」的诞生开始讲起。在公元1888年,一位奥地利的植物学家,菲德烈.莱尼泽(friedrich reinitzer)发现了一种特殊的物质。他从植物中提炼出一种称为螺旋性甲苯酸盐的化合物,在为这种化合物做加热实验时,意外的发现此种化合物具有两个不同温度的熔点。而它的状态介于我们一般所熟知的液态与固态物质之间,有点类似肥皂水的胶状溶液,但它在某一温度范围内却具有液体和结晶双方性质的物质,也由于其独特的状态,后来便把它命名为「liquid crystal」,就是液态结晶物质的意思。不过,虽然液晶早在1888年就被发现,但是真正实用在生活周遭的用品时,却是在80年后的事情了。 公元1968年,在美国rca公司(收音机与电视的发明公司)的沙诺夫研发中心,工程师们发现液晶分子会受到电压的影响,改变其分子的排列状态,并且可以让射入的光线产生偏转的现象。利用此一原理,rca公司发明了世界第一台使用液晶显示的屏幕。尔后,液晶显示技术被广泛的用在一般的电子产品中,举凡计算器、电子表、手机屏幕、医院所使用的仪器(因为有辐射计量的考虑)或是数字相机上面的屏幕等等。 令人玩味的是,液晶的发现比真空管或是阴极射线管还早,但世人了解此一现象的并不多,直到1962年才有第一本,由rca研究小组的化学家乔.卡司特雷诺(joe castellano)先生所出版的书籍来描述。而与映像管相同的,这两项技术虽然都是由美国的rca公司所发明的,却分别被日本的新力(sony)与夏普(sharp)两家公司发扬光大。 3. 什么是液晶 液晶显示器是以液晶材料为基本组件,由于液晶是介于固态和液态之间,不但具有固态晶体光学特性,又具有液态流动特性,所以已经可以说是一个中间相。而要了解液晶的所产生的光电效应,我们必须来解释液晶的物理特性,包括它的黏性(visco-sity)与弹性(elasticity)和其极化性(polarizalility)。液晶的黏性和弹性从流体力学的观点来看,可说是一个具有排列性质的液体,依照作用力量不同的方向,应该有不同的效果。就好像是将一把短木棍扔进流动的河水中,短木棍随着河水流着,起初显得凌乱,过了一会儿,所有短木棍的长轴都自然的变成与河水流动的方向一致,这表示着次黏性最低的流动方式,也是流动自由能最低的一个物理模型。 此外,液晶除了有黏性的反应外,还具有弹性的反应,它们都是对于外加的力量,呈现了方向性的效果。也因此光线射入液晶物质中,必然会按照液晶分子的排列方式行进,产生了自然的偏转现像。至于液晶分子中的电子结构,都具备着很强的电子共轭运动能力,所以当液晶分子受到外加电场的作用,便很容易的被极化产生感应偶极性(induced dipolar),这也是液晶分子之间互相作用力量的来源。而一般电子产品中所用的液晶显示器,就是是利用液晶的光电效应,藉由外部的电压控制,再透过液晶分子的折射特性,以及对光线的旋转能力来获得亮暗情况(或著称为可视光学的对比),进而达到显像的目的。 4. 液晶显示器的种类 液晶显示器,英文通称为lcd(liquid crystal display),是属于平面显示器的一种,依驱动方式来分类可分为静态驱动(static)、单纯矩阵驱动(simple matrix)以及主动矩阵驱动(active matrix)三种。其中,被动矩阵型又可分为扭转式向列型(twisted nematic;tn)、超扭转式向列型(super twisted nematic;stn)及其它被动矩阵驱动液晶显示器;而主动矩阵型大致可区分为薄膜式晶体管型(thin film transistor;tft)及二端子二极管型(metal/insulator/metal;mim)二种方式。(详细的分类请参考附图)tn、stn及tft型液晶显示器因其利用液晶分子扭转原理之不同,在视角、彩色、对比及动画显示品质上有高低程次之差别,使其在产品的应用范围分类亦有明显区隔。以目前液晶显示技术所应用的范围以及层次而言,主动式矩阵驱动技术是以薄膜式晶体管型(tft)为主流,多应用于笔记型计算机及动画、影像处理产品。而单纯矩阵驱动技术目前则以扭转向列(tn)、以及超扭转向列(stn)为主,目前的应用多以文书处理器以及消费性产品为主。在这之中,tft液晶显示器所需的资金投入以及技术需求较高,而tn及stn所需的技术及资金需求则相对较低。 5. 液晶显示器的运作原理 如以上所提,目前液晶显示技术大多以tn、stn、tft三种技术为主轴,因此我们就这从这三种技术来探讨它们的运作原理。 tn型的液晶显示技术可说是液晶显示器中最基本的,而之后其它种类的液晶显示器也可说是以tn型为原点来加以改良。同样的,它的运作原理也较其它技术来的简单,请读者参照下方的图片。图中所表示的是tn型液晶显示器的简易构造图,包括了垂直方向与水平方向的偏光板,具有细纹沟槽的配向膜,液晶材料以及导电的玻璃基板。 其显像原理是将液晶材料置于两片贴附光轴垂直偏光板之透明导电玻璃间,液晶分子会依配向膜的细沟槽方向依序旋转排列,如果电场未形成,光线会顺利的从偏光板射入,依液晶分子旋转其行进方向,然后从另一边射出。如果在两片导电玻璃通电之后,两片玻璃间会造成电场,进而影响其间液晶分子的排列,使其分子棒进行扭转,光线便无法穿透,进而遮住光源。这样所得到光暗对比的现象,叫做扭转式向列场效应,简称tnfe(twisted nematic field effect)。在电子产品中所用的液晶显示器,几乎都是用扭转式向列场效应原理所制成。stn型的显示原理也似类似,如下图,不同的是tn扭转式向列场效应的液晶分子是将入射光旋转90度,而stn超扭转式向列场效应是将入射光旋转180~270度。 要在这边说明的是,单纯的tn液晶显示器本身只有明暗两种情形(或称黑白),并没有办法做到色彩的变化。而stn液晶显示器牵涉液晶材料的关系,以及光线的干涉现象,因此显示的色调都以淡绿色与橘色为主。但如果在传统单色stn液晶显示器加上一彩色滤光片(color filter),并将单色显示矩阵之任一像素(pixel)分成三个子像素(sub-pixel),分别透过彩色滤光片显示红、绿、蓝三原色,再经由三原色比例之调和,也可以显示出全彩模式的色彩。另外,tn型的液晶显示器如果显示屏幕做的越大,其屏幕对比度就会显得较差,不过藉由stn的改良技术,则可以弥补对比度不足的情况。 6. 液晶屏幕的驱动方式 在tn与stn型的液晶显示器中,所使用单纯驱动电极的方式,都是采用x、y轴的交叉方式来驱动,如下图所示,因此如果显示部份越做越大的话,那么中心部份的电极反应时间可能就会比较久。而为了让屏幕显示一致,整体速度上就会变慢。讲的简单一点,就好像是crt显示器的屏幕更新频率不够快,那是使用者就会感到屏幕闪烁、跳动;或着是当需要快速3d动画显示时,但显示器的显示速度却无法跟上,显示出来的要果可能就会有延迟的现象。所以,早期的液晶显示器在尺寸上有一定的限制,而且并不适合拿来看电影、或是玩3d游戏。 为了改善此一情形,后来液晶显示技术采用了主动式矩阵(active-matrix addressing)的方式来驱动,这是目前达到高数据密度液晶显示效果的理想装置,且分辨率极高。方法是利用薄膜技术所做成的硅晶体管电极,利用扫描法来选择任意一个显示点(pixel)的开与关。这其实是利用薄膜式晶体管的非线性功能来取代不易控制的液晶非线性功能。 如上图,在tft型液晶显器中,导电玻璃上画上网状的细小线路,电极则由是薄膜式晶体管所排列而成的矩阵开关,在每个线路相交的地方则有着一弄控制匣,虽然驱动讯号快速地在各显示点扫瞄而过,但只有电极上晶体管矩阵中被选择的显示点得到足以驱动液晶分子的电压,使液晶分子轴转向而成「亮」的对比,不被选择的显示点自然就是「暗」的对比,也因此避免了显示功能对液晶电场效应能力的依靠。 7. tft型液晶显示器的运作原理 tft型的液晶显示器较为复杂,主要的构成包括了,荧光管、导光板、偏光板、滤光板、玻璃基板、配向膜、液晶材料、薄模式晶体管等等。首先液晶显示器必须先利用背光源,也就是荧光灯管投射出光源,这些光源会先经过一个偏光板然后再经过液晶,这时液晶分子的排列方式进而改变穿透液晶的光线角度。然后这些光线接下来还必须经过前方的彩色的滤光膜与另一块偏光板。因此我们只要改变刺激液晶的电压值就可以控制最后出现的光线强度与色彩,并进而能在液晶面板上变化出有不同深浅的颜色组合了。
一.工艺流程简述: 前段工位: ITO 玻璃的投入(grading)—— 玻璃清洗与干燥(CLEANING)——涂光刻胶(PR COAT)——前烘烤(PREBREAK)——曝光(DEVELOP) 显影(MAIN CURE)——蚀刻(ETCHING)—— 去膜(STRIP CLEAN)—— 图检(INSP)——清洗干燥(CLEAN)——TOP 涂布(TOP COAT)—— UV 烘烤(UV CURE)—— 固化(MAIN CURE)——清洗(CLEAN)—— 涂取向剂(PI PRINT)——固化(MAIN CURE)—— 清洗(CLEAN)——丝网印刷(SEAL/SHORT PRINTING)—— 烘烤(CUPING FURNACE)—— 喷衬垫料(SPACER SPRAY)—— 对位压合(ASSEMBLY)—— 固化(SEAL MAIN CURING) 1. ITO 图形的蚀刻:(ITO 玻璃的投入到图检完成) A. ITO 玻璃的投入:根据产品的要求,选择合适的ITO 玻璃装入传递篮具中,要求ITO 玻璃的规格型号符合产品要求,切记ITO 层面一定要向上插入篮具中。 B. 玻璃的清洗与干燥: 将用清洗剂以及去离子水(DI 水)等洗净ITO 玻璃,并用物理或者化学的方法将ITO 表面的杂质和油污洗净,然后把水除去并干燥,保证下道工艺的加工质量。 C. 涂光刻胶: 在ITO 玻璃的导电层面上均匀涂上一层光刻胶,涂过光刻胶的玻璃要在一定的温度下作预处理:(如下图) D. 前烘:在一定的温度下将涂有光刻胶的玻璃烘烤一段时间,以使光刻胶中的溶剂挥发,增加与玻璃表面的粘附性。 E. 曝光:用紫外光(UV)通过预先制作好的电极图形掩模版照射光刻胶表面,使被照光刻胶层发生反应,在涂有光刻胶的玻璃上覆盖光刻掩模版在紫外灯下对光刻胶进行选择性曝光:(如图所示) F. 显影:用显影液处理玻璃表面,将经过光照分解的光刻胶层除去,保留未曝光部分的光刻胶层,用化学方法使受UV 光照射部分的光刻胶溶于显影液中,显影后的玻璃要经过一定的温度的坚膜处理 G. 坚膜:将玻璃再经过一次高温处理,使光刻胶更加坚固。 H. 刻蚀:用适当的酸刻液将无光刻胶覆盖的ITO 膜蚀掉,这样就得到了所需要的ITO 电极图形, 注:ITO 玻璃为(In2O3 与SnO2)的导电玻璃,此易与酸发生反应,而用于蚀刻掉多余的ITO,从而得到相应的拉线电极。 I. 去膜:用高浓度的碱液(NaOH 溶液)作脱膜液,将玻璃上余下的光刻胶剥离掉,从而使ITO 玻璃上形成与光刻掩模版完全一致的ITO 图形。(即按客户要求进行显示的部分拉线蚀刻完成,如图) J. 清洗干燥:用高纯水冲洗余下的碱液和残留的光刻胶以及其它的杂质。 2. 特殊制程:(TOP 膜的涂布到固化后清洗) 一般的TN 与STN 产品不要求此步骤,TOP 膜的涂布工艺是在光刻工艺之后再做一次SiO2 的涂布,以此把刻蚀区与非刻蚀区之间的沟槽填平并把电极覆盖住,这既可以起到绝缘层的作用,又能有效地消除非显示状态下的电极底影,还有助于改善视角特性等等,因此大部分的高档次产品要求有TOP 涂布。 3. 取向涂布(涂取向剂到清洗完成) 此步工艺为在蚀刻完成的ITO 玻璃表面涂覆取向层,并用特定的方法对限向层进行处理,以使液晶分子能够在取向层表面沿特定的方向取向(排列),此步骤是液晶显示器生产的特有技术。 A. 涂取向剂:将有机高分子取向材料涂布在玻璃的表面,即采用选择涂覆的方法,在ITO 玻璃上的适当位置涂一层均匀的取向层,同时对取向层做固化处理。(一般在显示区) B. 固化: 通过高温处理使取向层固化。 C. 取向摩擦:用绒布类材料以特定的方向摩擦取向层表面,以使液晶分子将来能够沿着取向层的摩擦方向排列。如TN 型号摩擦取向:45 度 D. 清洗: 取向摩擦后的玻璃上会留下绒布线等污染物,需要采取特殊的清洗步骤来消除污染物。 4. 空盒制作:(丝网印刷到固化) 此步工艺是把两片导电玻璃对叠,利用封接材料贴合起来并固化,制成间隙为特定厚度的玻璃盒。制盒技术是制造液晶显示器的最为关键的技术之一。(必须严格控制液晶盒的间距) A. 丝印边框及银点:将封接材料(封框胶)用丝网印刷的方法分别对上板印上边框胶和和下板玻璃印是导电胶。 B. 喷衬垫料: 在下玻璃上均匀分布支撑材料。将一定尺寸的衬垫料(一般为几个微米)均匀分散在玻璃表面,制盒时就靠这些材料保证玻璃之间的间距即盒厚。 C. 对位压合: 按对位标记上与下玻璃对位粘合,将对应的两片玻璃面对面用封接材料粘合起来。 D. 固化: 在高温下使封接材料固化。固化时一般在上下玻璃上加上一定的压力,以使液晶盒间距(厚度保持均匀)。 后段工位: 切割(SCRIBING)—— Y 轴裂片(BREAK OFF)—— 灌注液晶(LC INJECTION)—— 封口(END SEALING)——X 轴裂片(BREAK OFF)—— 磨边—— 一次清洗(CLEAN) ——再定向(HEATING) ——光台目检(VISUAL INSP)—— 电测图形检验(ELECTRICAL)——二次清洗(CLEAN)—— 特殊制程(POLYGON)——背印(BACK PRINTING)—— 干墨(CURE)—— 贴片(POLARIZER ASSEMBLY)—— 热压(CLEAVER)—— 成检外观检判(FQC) ——上引线(BIT PIN)—— 终检(FINAL INSP)——包装(PACKING)—— 入库(IN STOCK) 参考资料 http://cn.fpdisplay.com/technology/Tech_Shtml/1_200651395955542.htm 请原谅啊,我也是拷贝的,网页有详细说明。
就是用......液晶制造的液晶显示器(lcd) 目前科技信息产品都朝着轻、薄、短、小的目标发展,在计算机周边中拥有悠久历史的显示器产品当然也不例外。在便于携带与搬运为前题之下,传统的显示方式如crt映像管显示器及led显示板等等,皆受制于体积过大或耗电量甚巨等因素,无法达成使用者的实际需求。而液晶显示技术的发展正好切合目前信息产品的潮流,无论是直角显示、低耗电量、体积小、还是零辐射等优点,都能让使用者享受最佳的视觉环境。 2. 液晶的诞生 要追溯液晶显示器的来源,必须先从「液晶」的诞生开始讲起。在公元1888年,一位奥地利的植物学家,菲德烈.莱尼泽(friedrich reinitzer)发现了一种特殊的物质。他从植物中提炼出一种称为螺旋性甲苯酸盐的化合物,在为这种化合物做加热实验时,意外的发现此种化合物具有两个不同温度的熔点。而它的状态介于我们一般所熟知的液态与固态物质之间,有点类似肥皂水的胶状溶液,但它在某一温度范围内却具有液体和结晶双方性质的物质,也由于其独特的状态,后来便把它命名为「liquid crystal」,就是液态结晶物质的意思。不过,虽然液晶早在1888年就被发现,但是真正实用在生活周遭的用品时,却是在80年后的事情了。 公元1968年,在美国rca公司(收音机与电视的发明公司)的沙诺夫研发中心,工程师们发现液晶分子会受到电压的影响,改变其分子的排列状态,并且可以让射入的光线产生偏转的现象。利用此一原理,rca公司发明了世界第一台使用液晶显示的屏幕。尔后,液晶显示技术被广泛的用在一般的电子产品中,举凡计算器、电子表、手机屏幕、医院所使用的仪器(因为有辐射计量的考虑)或是数字相机上面的屏幕等等。 令人玩味的是,液晶的发现比真空管或是阴极射线管还早,但世人了解此一现象的并不多,直到1962年才有第一本,由rca研究小组的化学家乔.卡司特雷诺(joe castellano)先生所出版的书籍来描述。而与映像管相同的,这两项技术虽然都是由美国的rca公司所发明的,却分别被日本的新力(sony)与夏普(sharp)两家公司发扬光大。 3. 什么是液晶 液晶显示器是以液晶材料为基本组件,由于液晶是介于固态和液态之间,不但具有固态晶体光学特性,又具有液态流动特性,所以已经可以说是一个中间相。而要了解液晶的所产生的光电效应,我们必须来解释液晶的物理特性,包括它的黏性(visco-sity)与弹性(elasticity)和其极化性(polarizalility)。液晶的黏性和弹性从流体力学的观点来看,可说是一个具有排列性质的液体,依照作用力量不同的方向,应该有不同的效果。就好像是将一把短木棍扔进流动的河水中,短木棍随着河水流着,起初显得凌乱,过了一会儿,所有短木棍的长轴都自然的变成与河水流动的方向一致,这表示着次黏性最低的流动方式,也是流动自由能最低的一个物理模型。 此外,液晶除了有黏性的反应外,还具有弹性的反应,它们都是对于外加的力量,呈现了方向性的效果。也因此光线射入液晶物质中,必然会按照液晶分子的排列方式行进,产生了自然的偏转现像。至于液晶分子中的电子结构,都具备着很强的电子共轭运动能力,所以当液晶分子受到外加电场的作用,便很容易的被极化产生感应偶极性(induced dipolar),这也是液晶分子之间互相作用力量的来源。而一般电子产品中所用的液晶显示器,就是是利用液晶的光电效应,藉由外部的电压控制,再透过液晶分子的折射特性,以及对光线的旋转能力来获得亮暗情况(或著称为可视光学的对比),进而达到显像的目的。 4. 液晶显示器的种类 液晶显示器,英文通称为lcd(liquid crystal display),是属于平面显示器的一种,依驱动方式来分类可分为静态驱动(static)、单纯矩阵驱动(simple matrix)以及主动矩阵驱动(active matrix)三种。其中,被动矩阵型又可分为扭转式向列型(twisted nematic;tn)、超扭转式向列型(super twisted nematic;stn)及其它被动矩阵驱动液晶显示器;而主动矩阵型大致可区分为薄膜式晶体管型(thin film transistor;tft)及二端子二极管型(metal/insulator/metal;mim)二种方式。(详细的分类请参考附图)tn、stn及tft型液晶显示器因其利用液晶分子扭转原理之不同,在视角、彩色、对比及动画显示品质上有高低程次之差别,使其在产品的应用范围分类亦有明显区隔。以目前液晶显示技术所应用的范围以及层次而言,主动式矩阵驱动技术是以薄膜式晶体管型(tft)为主流,多应用于笔记型计算机及动画、影像处理产品。而单纯矩阵驱动技术目前则以扭转向列(tn)、以及超扭转向列(stn)为主,目前的应用多以文书处理器以及消费性产品为主。在这之中,tft液晶显示器所需的资金投入以及技术需求较高,而tn及stn所需的技术及资金需求则相对较低。 5. 液晶显示器的运作原理 如以上所提,目前液晶显示技术大多以tn、stn、tft三种技术为主轴,因此我们就这从这三种技术来探讨它们的运作原理。 tn型的液晶显示技术可说是液晶显示器中最基本的,而之后其它种类的液晶显示器也可说是以tn型为原点来加以改良。同样的,它的运作原理也较其它技术来的简单,请读者参照下方的图片。图中所表示的是tn型液晶显示器的简易构造图,包括了垂直方向与水平方向的偏光板,具有细纹沟槽的配向膜,液晶材料以及导电的玻璃基板。 其显像原理是将液晶材料置于两片贴附光轴垂直偏光板之透明导电玻璃间,液晶分子会依配向膜的细沟槽方向依序旋转排列,如果电场未形成,光线会顺利的从偏光板射入,依液晶分子旋转其行进方向,然后从另一边射出。如果在两片导电玻璃通电之后,两片玻璃间会造成电场,进而影响其间液晶分子的排列,使其分子棒进行扭转,光线便无法穿透,进而遮住光源。这样所得到光暗对比的现象,叫做扭转式向列场效应,简称tnfe(twisted nematic field effect)。在电子产品中所用的液晶显示器,几乎都是用扭转式向列场效应原理所制成。stn型的显示原理也似类似,如下图,不同的是tn扭转式向列场效应的液晶分子是将入射光旋转90度,而stn超扭转式向列场效应是将入射光旋转180~270度。 要在这边说明的是,单纯的tn液晶显示器本身只有明暗两种情形(或称黑白),并没有办法做到色彩的变化。而stn液晶显示器牵涉液晶材料的关系,以及光线的干涉现象,因此显示的色调都以淡绿色与橘色为主。但如果在传统单色stn液晶显示器加上一彩色滤光片(color filter),并将单色显示矩阵之任一像素(pixel)分成三个子像素(sub-pixel),分别透过彩色滤光片显示红、绿、蓝三原色,再经由三原色比例之调和,也可以显示出全彩模式的色彩。另外,tn型的液晶显示器如果显示屏幕做的越大,其屏幕对比度就会显得较差,不过藉由stn的改良技术,则可以弥补对比度不足的情况。 6. 液晶屏幕的驱动方式 在tn与stn型的液晶显示器中,所使用单纯驱动电极的方式,都是采用x、y轴的交叉方式来驱动,如下图所示,因此如果显示部份越做越大的话,那么中心部份的电极反应时间可能就会比较久。而为了让屏幕显示一致,整体速度上就会变慢。讲的简单一点,就好像是crt显示器的屏幕更新频率不够快,那是使用者就会感到屏幕闪烁、跳动;或着是当需要快速3d动画显示时,但显示器的显示速度却无法跟上,显示出来的要果可能就会有延迟的现象。所以,早期的液晶显示器在尺寸上有一定的限制,而且并不适合拿来看电影、或是玩3d游戏。 为了改善此一情形,后来液晶显示技术采用了主动式矩阵(active-matrix addressing)的方式来驱动,这是目前达到高数据密度液晶显示效果的理想装置,且分辨率极高。方法是利用薄膜技术所做成的硅晶体管电极,利用扫描法来选择任意一个显示点(pixel)的开与关。这其实是利用薄膜式晶体管的非线性功能来取代不易控制的液晶非线性功能。 如上图,在tft型液晶显器中,导电玻璃上画上网状的细小线路,电极则由是薄膜式晶体管所排列而成的矩阵开关,在每个线路相交的地方则有着一弄控制匣,虽然驱动讯号快速地在各显示点扫瞄而过,但只有电极上晶体管矩阵中被选择的显示点得到足以驱动液晶分子的电压,使液晶分子轴转向而成「亮」的对比,不被选择的显示点自然就是「暗」的对比,也因此避免了显示功能对液晶电场效应能力的依靠。 7. tft型液晶显示器的运作原理 tft型的液晶显示器较为复杂,主要的构成包括了,荧光管、导光板、偏光板、滤光板、玻璃基板、配向膜、液晶材料、薄模式晶体管等等。首先液晶显示器必须先利用背光源,也就是荧光灯管投射出光源,这些光源会先经过一个偏光板然后再经过液晶,这时液晶分子的排列方式进而改变穿透液晶的光线角度。然后这些光线接下来还必须经过前方的彩色的滤光膜与另一块偏光板。因此我们只要改变刺激液晶的电压值就可以控制最后出现的光线强度与色彩,并进而能在液晶面板上变化出有不同深浅的颜色组合了。

液晶如何制造

文章TAG:color是什么什么牌子sio是什么牌子如何区分钛白粉好坏

最近更新

  • 眼镜175度配眼镜多少钱眼镜175度配眼镜多少钱

    a眼镜多少钱?口粮眼镜一般多少钱?左眼175度,请问眼镜的价格是多少?学生配眼镜一般在500~1000元左右,要根据近视程度收费。1.目前眼镜包括框架眼镜,隐形眼镜和角膜塑形镜,需要匹配眼镜?配一个好.....

    知识 日期:2024-04-27

  • 眼镜片划了怎么去划痕,眼镜上的划痕怎么能洗掉越详细越好眼镜片划了怎么去划痕,眼镜上的划痕怎么能洗掉越详细越好

    眼镜上的划痕怎么能洗掉越详细越好你可以考虑用下牙膏试试~~估计是可以的,我不带眼睛不是很清楚。你试着用牙膏轻轻的磨刷,效果很好,用牙膏细抹在划痕处2,眼镜片划上伤痕怎么处理玻璃的就.....

    知识 日期:2024-04-27

  • 450度的眼镜价格是多少450度的眼镜价格是多少

    425度眼镜多少钱?500度眼镜,多少钱?300-400度的一双多少钱眼镜,现在400度左右眼镜。450戴隐形多少钱眼镜?我右眼450度左眼425度,...非球面镜片450度近视镜片,接触度眼镜是3.75度,我是眼镜店QQ.....

    知识 日期:2024-04-27

  • 配眼镜时看的红绿是干什么的,验光为什么要看红绿光配眼镜时看的红绿是干什么的,验光为什么要看红绿光

    验光为什么要看红绿光2,验光是的红绿对比是做什么3,3d眼镜上粘的红绿塑料片是干什么用的1,验光为什么要看红绿光可以判断度数是否合适,是需要再加点还是降低。具体点讲是看你的度数是验高.....

    知识 日期:2024-04-27

  • 圆脸适合什么款式的太阳镜,圆脸的人适合戴什么款式的太阳眼镜圆脸适合什么款式的太阳镜,圆脸的人适合戴什么款式的太阳眼镜

    圆脸的人适合戴什么款式的太阳眼镜2,圆脸的人适合什么形状的太阳镜3,圆脸适合什么太阳镜1,圆脸的人适合戴什么款式的太阳眼镜方行的,如果边框是黑色的话效果会更好大框的深玫瑰红色红边框.....

    知识 日期:2024-04-27

  • 杨洋的太阳镜什么牌子,杨洋上次在机场穿过一双老爹鞋特别的帅气我也好喜欢就是不知杨洋的太阳镜什么牌子,杨洋上次在机场穿过一双老爹鞋特别的帅气我也好喜欢就是不知

    杨洋上次在机场穿过一双老爹鞋特别的帅气我也好喜欢就是不知想买还不容易啊,记得没错的话,杨洋穿的应该是ASH牌子的鞋子,可以去天猫及官司网上看看,这两个地方都是保证质量的。戴墨镜的那.....

    知识 日期:2024-04-27

  • 66岁老花眼镜多少度66岁老花眼镜多少度

    6l岁老人戴老花眼镜05-06视力正常吗?88岁老人穿多少度眼镜除去它的因素,简单来说,88岁老人穿老花-1/而且度数几乎在350400范围内。一般来说老花镜像的度数和他的年龄成正比,根据年龄与眼老.....

    知识 日期:2024-04-27

  • 什么牌子的黑框眼镜好看,哪个牌子的黑框眼镜好看什么牌子的黑框眼镜好看,哪个牌子的黑框眼镜好看

    哪个牌子的黑框眼镜好看2,什么牌子的黑色眼镜框比较好3,黑框眼镜哪个牌子比较好4,黑框眼镜买什么牌子的比较好价位多少配什么牌子的镜片好搜5,黑框眼镜什么牌子得比较好1,哪个牌子的黑框眼.....

    知识 日期:2024-04-27